Worksheet for 2021-11-12

Computations

Problem 1. Decide whether $\mathbf{r}_{u} \times \mathbf{r}_{v}$ or its negative $\mathbf{r}_{v} \times \mathbf{r}_{u}$ points in the correct direction.
(a) Plane $x=u, y=v, z=4 x-3 y$. Direction: upwards.
(b) Cylinder $x=3 \cos u, y=3 \sin u, z=v, 0 \leq u \leq 2 \pi, 0 \leq v \leq 1$. Direction: outwards.
(c) Sphere $x=3 \sin u \cos v, y=3 \sin u \sin v, z=3 \cos u, 0 \leq u \leq \pi, 0 \leq v \leq 2 \pi$. Direction: outwards.

Problem 2. Let S be the sphere $x^{2}+y^{2}+z^{2}=R^{2}$ where R is some fixed positive real number. The surface area of S is $4 \pi R^{2}$. Using this information (and without parametrizing), compute the flux of $\mathbf{F}=\langle x, y, z\rangle$ outwards through S. That is, compute $\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}=\iint_{S} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} S$.
Hint: How do you find a normal vector for a surface defined by an equation?

