Math 53: Multivariable Calculus

Worksheet for 2021-11-12

Computations

Problem 1. Decide whether $\mathbf{r}_u \times \mathbf{r}_v$ or its negative $\mathbf{r}_v \times \mathbf{r}_u$ points in the correct direction.

- (a) Plane x = u, y = v, z = 4x 3y. Direction: upwards.
- (b) Cylinder $x = 3 \cos u$, $y = 3 \sin u$, z = v, $0 \le u \le 2\pi$, $0 \le v \le 1$. Direction: outwards.
- (c) Sphere $x = 3 \sin u \cos v$, $y = 3 \sin u \sin v$, $z = 3 \cos u$, $0 \le u \le \pi$, $0 \le v \le 2\pi$. Direction: outwards.

Problem 2. Let *S* be the sphere $x^2 + y^2 + z^2 = R^2$ where *R* is some fixed positive real number. The surface area of *S* is $4\pi R^2$. Using this information (and without parametrizing), compute the flux of $\mathbf{F} = \langle x, y, z \rangle$ outwards through *S*. That is, compute the flux of $\mathbf{F} = \langle x, y, z \rangle$ outwards through *S*.

 $\iint_{S} \mathbf{F} \cdot \mathbf{dS} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, \mathrm{dS}.$

Hint: How do you find a normal vector for a surface defined by an equation?